nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 06, v.23 34-42
基于高分辨率遥感和多源数据融合的耕地边界精准提取方法研究
基金项目(Foundation): 中国地质调查局项目(DD20230528)
邮箱(Email): 565783799@qq.com;
DOI:
摘要:

耕地边界精准提取是自然资源管理与粮食安全评估的关键技术。针对传统方法在复杂地形中精度不足的问题,提出基于高分辨率遥感与多源数据融合的耕地边界提取方法。通过PCA/ICA联合降维消除数据冗余,构建“深度学习初步分割—多源特征边界优化—形态学后处理”技术链路,提升复杂场景下的边界连续性与定位精度。实验选取江苏平原、云南山地、黑龙江黑土区验证,结果表明:融合多源数据后,模型平均IoU达0.92,较单一深度学习模型提升6.9%-9.5%,边界误差从8.7m降至3.2m以下,Kappa系数超0.85,显著优于随机森林、阈值分割等传统方法。研究构建的多源数据融合框架与优化技术为耕地动态监测提供了高效解决方案。

Abstract:

Precise extraction of cultivated land boundaries is a key technology in natural resource management and food security assessment.Considering the problem of insufficient accuracy of traditional methods in complex terrains, this study proposes a method for extracting cultivated land boundaries based on high-resolution remote sensing and multi-source data fusion.Data redundancy is eliminated through the joint dimension reduction of PCA/ICA,and the technical link of “deep learning preliminary segmentation-multi-source feature boundary optimization-morphological post-processing” is constructed to improve the boundary continuity and positioning accuracy in complex scenarios.The experiment selects the plain of Jiangsu, the mountainous area of Yunnan, and the black soil area of Heilongjiang for verification.The results show that after integrating multi-source data, the average IoU of the model reaches 0.92,which is 6.9%-9.5% higher than that of a single deep learning model.The boundary error decreases from 8.7 meters to less than 3.2 meters, and the Kappa coefficient exceeds 0.85,significantly superior to traditional methods, such as random forest and threshold segmentation.The multi-source data fusion framework and optimization technology constructed in the research provide an efficient solution for the dynamic monitoring of cultivated land.

参考文献

[1 ] 李东辉,孙肖,霍润斌,等.地表基质遥感调查主要内容及方法探讨[J].黑龙江国土资源,2025,23(03):44-51.

[2 ] 韩俊.不同的遥感解译方法在地表覆盖分类信息提取中的应用研究[D].昆明:昆明理工大学,2015.

[3 ] 周林,武黎黎,李响.基于改进U-Net的遥感影像农作物提取[J].计算机系统应用,2025,34(06):89-96.

[4 ] 乔志勇.基于改进DeepLabV3+的高分辨率遥感影像建筑物提取[J].地理空间信息,2024,22(12):69-73.

[5 ] Saralioglu E,Vatandaslar C.Land use/land cover classification with Landsat-8 and Landsat-9 satellite images:A comparative analysis between forest-and agriculture-dominated landscapes using different machine learning methods[J].Acta Geodaetica et Geophysica,2022,57(04):695-716.

[6 ] Papadopoulou E,Mallinis G,Siachalou S,et al.Agricultural land cover mapping through two deep learning models in the framework of EU's CAP activities using sentinel-2 multitemporal imagery[J].Remote Sensing,2023,15(19):4657.

[7 ] 席志龙.主被动遥感协同的森林蓄积量反演及时空变化研究[D].哈尔滨:东北林业大学,2023.

[8 ] Li Y,Chang C,Wang Z,et al.Identification of cultivated land quality grade using fused multi-source data and multi-temporal crop remote sensing information[J].Remote Sensing,2022,14(09):2109.

[9 ] 朱曼,方剑,朱兆明,等.结合时序Sentinel-2和GF-2影像的耕地撂荒识别[J].测绘技术装备,2025,27(01):140-147.

[10 ] 王飞文,孙五斌,郑明丹.融合主成分分析与曲率特征的点云去噪方法研究[J].测绘与空间地理信息,2024,47(11):182-185.

[11 ] 刘秀慧,李勇,葛莹,等.一种改进U-Net的干旱区地表水资源遥感提取研究[J].时空信息学报,2025,32(02):158-167.

[12 ] 赵阳,倪化勇,伍剑波,等.基于AHP-CF模型的地质灾害易发性评价——以泰顺县仕阳镇为例[J].华东地质,2021,42(01):66-75.

[13 ] 张俊,陈雨艳,秦震宇,等.改进DeepLab v3+模型下的梯田遥感提取研究[J].智慧农业(中英文),2024,6(03):46-57.

[14 ] 郑茜,邱春霞,李存军,等.面向对象的无人机遥感影像亚田块边界提取[J].科技与创新,2022,9(03):1-3.

[15 ] 王一帆,徐涵秋.基于客观阈值与随机森林Gini指标的水体遥感指数对比[J].遥感技术与应用,2020,35(05):1089-1098.

[16 ] 宋梦龙,颜涛,张鹏,等.基于随机森林模型的不同空间分辨率遥感影像草地提取研究[J].草原与草业,2025,37(01):12-17.

[17 ] 李雨阳,刘舫,胡文君,等.基于多源遥感数据的植被精细分类方法对比[J].世界地质,2025,44(02):311-321.

[18 ] 戴佳乐.高光谱遥感混合光谱特征分析与解混模型研究[D].唐山:华北理工大学,2023.

[19 ] 张定源,张景,牛晓楠,等.空间冲突理论分析与实证研究[J].华东地质,2022,43(01):17-29.

[20 ] 张定源,张景,牛晓楠,等.双评价理论探索与福建实践[J].华东地质,2021,42(04):419-428.

[21 ] 单治彬,孔金玲,张永庭,等.面向对象的特色农作物种植遥感调查方法研究[J].地球信息科学学报,2018,20(10):1509-1519.

基本信息:

DOI:

中图分类号:S127;F323.211

引用信息:

[1]孙杰,茹亮,梁帅等.基于高分辨率遥感和多源数据融合的耕地边界精准提取方法研究[J].黑龙江国土资源,2025,23(06):34-42.

基金信息:

中国地质调查局项目(DD20230528)

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文
检 索 高级检索